o
    hD                     @   s  d dl Z d dlZd dlZd dlZd dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZ d dlZd dlmZ d dlmZ d dlm  mZ d dlm  mZ d dlmZmZ d dlmZ d dlm Z m!Z! g d	Z"d
e#de$e#e#f fddZ%dee& dej'de(e#ef fddZ)dej'de(e#ef dejj*fddZ+d8dejj*dejj*fddZ,dej*dej*fddZ-dej*de.ej' de.ej' de.ej' fd d!Z/ej0ej1ej2ej3ej4ej5ej6ej7ej8ej9ej7ej:ej;gZ<ej=ej>gZ?ej0ej@ej1ejAej2d"d# iZBde.ej' de(e#ej*f fd$d%ZCde.ej' de(e#ej*f d&e(ej*ej*f fd'd(ZDG d)d* d*ZEd9d-d.ZFd/eEdeGfd0d1ZHG d2d3 d3ZIdejJfdejj*d4ee(e#ef  d5e&ejJ dejj*fd6d7ZKdS ):    N)defaultdict)Iterable)Enum)AnycastOptional)ArgumentTarget)	ShapeProp)fuse_conv_bn_evalfuse_linear_bn_eval)matches_module_patternreplace_node_modulefuseremove_dropoutextract_subgraphmodules_to_mkldnnreset_modulesMklSubgraphgen_mkl_autotuneruse_mkl_length	UnionFindoptimize_for_inferencetargetreturnc                 C   s*   |  dd^ }}|r|d |fS d|fS )zp
    Splits a qualname into parent path and last atom.
    For example, `foo.bar.baz` -> (`foo.bar`, `baz`)
    .   r    )rsplit)r   parentname r!   v/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/torch/fx/experimental/optimization.py_parent_name%   s   r#   patternnodemodulesc                 C   s   t |jdkr	dS |jd |f}t| |D ]2\}}t|tjs" dS |jdkr* dS t|jts3 dS |j|vr; dS t	||j |urG dS qdS )Nr   Fcall_moduleT)
lenargszip
isinstancefxNodeopr   strtype)r$   r%   r&   nodesexpected_typecurrent_noder!   r!   r"   r   /   s    

r   
new_modulec                 C   s<   t | jtsJ t| j\}}||| j< t|| || d S N)r+   r   r/   r#   setattr)r%   r&   r4   parent_namer    r!   r!   r"   r   C   s   
r   Fmodelc                 C   s4  t jt jft jt jft jt jft jt jfg}|st	| } |r&t
| tjjs,t| }n| }t| }t	|j}|D ]W}|jD ]Q}t|||rt|jd jdkrTqA||jd j }	||j }
|
jseqA|d t jt jt jfv rwt|	|
}nt|	|
}t|jd || ||jd  || qAq<t||S )z
    Fuses convolution/BN and linear/BN layers for inference purposes.
    Will deepcopy your model by default, but can modify the model inplace as well.
    r   r   )nnConv1dBatchNorm1dConv2dBatchNorm2dConv3dBatchNorm3dLinearcopydeepcopyr+   torchr,   GraphModulesymbolic_tracedictnamed_modulesgraphr1   r   r(   r)   usersr   track_running_statsr   r   r   replace_all_uses_with
erase_node)r8   inplaceno_tracepatternsfx_modelr&   	new_graphr$   r%   first_layerbnfused_layerr!   r!   r"   r   L   s<   








r   c                 C   s*   t | }G dd dtj j}|| S )z5
    Removes all dropout layers from the module.
    c                       s>   e Zd Zdedeedf deeef def fddZ	  Z
S )z&remove_dropout.<locals>.DropoutRemoverr   r)   .kwargsr   c                    s:   t | j| tjrt|dksJ |d S t |||S )Nr   r   )r+   
submodulesr9   Dropoutr(   superr'   )selfr   r)   rU   	__class__r!   r"   r'   {   s   z2remove_dropout.<locals>.DropoutRemover.call_module)__name__
__module____qualname__r	   tupler   rF   r/   r   r'   __classcell__r!   r!   rZ   r"   DropoutRemoverz   s    

ra   )r,   rE   rC   Transformer	transform)r8   rP   ra   r!   r!   r"   r   t   s   

r   orig_moduler1   inputsoutputsc                    s|   t  }i  |D ]}||j}| |< q|D ]}|| fdd}| |< q| fdd|D  |  t | |S )z
    Given lists of nodes from an existing graph that represent a subgraph, returns a submodule that executes that subgraph.
    c                    s    |  S r5   r!   )xenvr!   r"   <lambda>       z"extract_subgraph.<locals>.<lambda>c                    s   g | ]} | qS r!   r!   ).0outputrh   r!   r"   
<listcomp>       z$extract_subgraph.<locals>.<listcomp>)r,   Graphplaceholderr    	node_copyrm   lintrD   )rd   r1   re   rf   rQ   inputnew_noder%   r!   rh   r"   r      s   	

r   c                 C   s
   t | S r5   )	th_mkldnnMkldnnBatchNorm)a_r!   r!   r"   rj      s   
 rj   c                 C   s   i }| D ]9}|j dkr=t|jtsJ ||j }t|tv r=tt| |tj}t|tj	s0J t
|||< t||| q|S )z
    For each node, if it's a module that can be preconverted into MKLDNN,
    then we do so and create a mapping to allow us to convert from the MKLDNN
    version of the module to the original.
    r'   )r.   r+   r   r/   r0   
mkldnn_maprC   floatr9   ModulerA   rB   r   )r1   r&   old_modulesr%   
cur_moduler4   r!   r!   r"   r      s   

r   r}   c                 C   sJ   | D ] }|j dkr"t|jtsJ ||j }||v r"t||||  qdS )za
    Maps each module that's been changed with `modules_to_mkldnn` back to its
    original.
    r'   N)r.   r+   r   r/   r   )r1   r&   r}   r%   r~   r!   r!   r"   r      s   	

r   c                   @   s   e Zd ZdejfddZdS )r   fx_graphc                 C   s   || _ g | _g | _g | _d S r5   )r   r1   start_nodes	end_nodes)rY   r   r!   r!   r"   __init__   s   
zMklSubgraph.__init__N)r\   r]   r^   r,   rp   r   r!   r!   r!   r"   r      s    r   
   r   c                    s*   dddt dtf fdd}|S )aW  
    This generates a heuristic that can be passed into `optimize_for_inference` that
    determines whether a subgraph should be run in MKL by running it with the example_inputs.

    Example usage:
        heuristic = gen_mkl_autotuner(example_inputs, iters=10)
        fast_model = optimization.optimize_for_inference(model, heuristic)
    NrH   r   c                    s   | j }d u r| jj| jjt dd |D  tttj	 dd | j
D }t| j||fdd}| fdd}tjjt  | fdd}||k S )	Nc                 S   s   g | ]}t |jqS r!   )rC   randnshaperl   r%   r!   r!   r"   rn      s    z@gen_mkl_autotuner.<locals>.use_mkl_heuristic.<locals>.<listcomp>c                 S   s   g | ]}|j d  qS )r   )r)   r   r!   r!   r"   rn      s    c                    s<   t D ]}|   qt }t  D ]}|   qt | S r5   )rangetime)fry   begin)iterswarmupr!   r"   	benchmark   s   z?gen_mkl_autotuner.<locals>.use_mkl_heuristic.<locals>.benchmarkc                      s   dd dd  D  D S )Nc                 S      g | ]}|  qS r!   )to_denserl   ir!   r!   r"   rn     s    zRgen_mkl_autotuner.<locals>.use_mkl_heuristic.<locals>.<lambda>.<locals>.<listcomp>c                 S   r   r!   )	to_mkldnnr   r!   r!   r"   rn     ro   r!   r!   sample_inputs	submoduler!   r"   rj     s    z>gen_mkl_autotuner.<locals>.use_mkl_heuristic.<locals>.<lambda>c                      s     S r5   r!   r!   r   r!   r"   rj     rk   )r   r   owning_moduler}   r
   	propagater   listr,   r-   r   r   r1   r   rH   rF   rG   )rH   input_nodesoutput_argsr   mkl_timeno_mkl_timeexample_inputsrP   r   r}   r   r   r"   use_mkl_heuristic   s"   z,gen_mkl_autotuner.<locals>.use_mkl_heuristic)r   bool)r   r   r   r   r!   r   r"   r      s   	r   rH   c                 C   s   t | jdkS )z
    This is a heuristic that can be passed into `optimize_for_inference` that
    determines whether a subgraph should be run in MKL by checking if there
    are more than 2 nodes in it
       )r(   r1   )rH   r!   r!   r"   r     s   r   c                   @   sF   e Zd Zdd ZdefddZdedefddZd	ed
efddZdS )r   c                 C   s   d g| | _ dg| | _d S )Nr   r   size)rY   nr!   r!   r"   r     s   zUnionFind.__init__vc                 C   s   || j |< d| j|< d S )Nr   r   )rY   r   r!   r!   r"   make_set   s   
zUnionFind.make_setr   c                 C   sB   | j | }||kr|S |d usJ | || j |< tt| j | S r5   )r   findr   int)rY   r   parr!   r!   r"   r   $  s   
zUnionFind.findrx   bc                 C   sf   |  ||  |}}||kr|S | j| | j| k r ||}}|| j|< | j|  | j| 7  < d S r5   )r   r   r   )rY   rx   r   r!   r!   r"   join,  s   

zUnionFind.joinN)r\   r]   r^   r   r   r   r   r   r!   r!   r!   r"   r     s
    r   pass_configtracerc              	      s@  dddt id}|du ri }|| |d rt| } |d r#t| } |d du r+| S t|d ts6td	d|d vr@td
|d d }| }|t	|  t
|j  t|  }G dd dt}t jD ]}|j}	|jdkr||j }
t|
tv r|j}	t|
 d}|dur|jtjksJ d|jtdksJ dn|jdkr|jtv r|j}	n|jtv r|j}	|	|jkr"|	|jkrtdd |j D sqk !| t
"|j  fdd}W d   n1 sw   Y  t#t$t
j%j& ||_  '|  (dd|f}|)| |f|_ W d   n	1 sw   Y  qkt*t j|}| _+ jD ]B}|jdkrr|jdkrr|j d }t|j,}|D ]}|jdkrc|jdkrc|)|  -| qKt.|j,dkrr -| q1t. j}t/|fddt0 jD ]w\}}|jdkr|jdkr||_12| q|jdkr|jdkrĈ|j d dusJ |j d |_3qfdd|j4D }t.|dkrאqtdd |D rJ t5|}|d |_6|dd D ]}7|d | qqt8 fd d} jD ]9}t9|d!r|:|j6 j;| t9|d"r1|:|j1 j<;| t9|d#rC|:|j3 j=;| q|> D ](}||sp|j<|j= D ]}|j d }|)|  -| qVt?|j|| qId} jD ]}|jdks|jdkr|d7 }qwt@AtBCd$|  D  t
|  }|S )%a  
    Performs a set of optimization passes to optimize a model for the
    purposes of inference. Specifically, the passes that are run are:
    1. Conv/BN fusion
    2. Dropout removal
    3. MKL layout optimizations

    The third optimization takes a function `use_mkl_heuristic` that's used
    to determine whether a subgraph should be explicitly run in MKL layout.

    Note: As FX does not currently handle aliasing, this pass currently
    assumes nothing aliases. If that isn't true, use at your own risk.
    T	heuristic)conv_bn_fuser   mkldnn_layout_optimizeNr   r   r   Fz+mkldnn_layout_optimize config is not a dictz4Heuristic not found in mkldnn_layout_optimize configc                   @   s   e Zd ZdZdZdZdS )z*optimize_for_inference.<locals>.MklSupportr   r      N)r\   r]   r^   NOYESUNKNOWNr!   r!   r!   r"   
MklSupportb  s    r   r'   z)this pass is only for torch.float modulescpuz!this pass is only for CPU modulescall_functionc                 s   s    | ]}|j d kV  qdS )r   N)r   )rl   argr!   r!   r"   	<genexpr>  s    z)optimize_for_inference.<locals>.<genexpr>c                    s     d| fS )Nr   )call_methodr   r   r!   r"   rj     s    z(optimize_for_inference.<locals>.<lambda>r   r   r   r   c                    s0   t | dr | jS t | dr | jS d S )Ncolorstart_color)hasattrr   r   r   r   )ufr!   r"   	get_color  s
   

z)optimize_for_inference.<locals>.get_colorc                    s,   g | ]}t |tjr |d ur |qS r5   )r+   r,   r-   r   )r   r!   r"   rn     s    
z*optimize_for_inference.<locals>.<listcomp>c                 s   s    | ]}|d u V  qd S r5   r!   r   r!   r!   r"   r     s    r   c                      s   t  S r5   )r   r!   r   r!   r"   rj     rk   r   r   	end_colorzmkldnn conversions: %s)Er   updater   r   r+   rF   RuntimeErrortracerA   rB   r,   rD   rootrG   r   r   r1   r   r.   r   r0   mkldnn_supportedr   next
parametersdtyperC   r{   devicemkldnn_supported_unknownr   anyr)   inserting_beforemap_argr   r_   r%   r   inserting_aftercreate_noderK   r   r}   rI   rL   r(   r   	enumerater   r   r   all_input_nodessortedr   r   r   r   r   appendr   r   valuesr   logging	getLoggerr\   infors   )r8   r   r   default_pass_configr   
cur_tracerr&   r   r%   supports_mkldnnr~   sample_parametermkldnn_argsdense_xr}   prv_noderI   user	num_nodescur_idx
cur_colorsother_colormkldnn_graphsrH   prvmkldnn_conversionsresultr!   )r   r   r   r"   r   6  s   
	





















r   )FF)r   r   )LrA   r   operatorr   collectionsr   collections.abcr   enumr   typingr   r   r   rC   torch.fxr,   torch.nnr9   torch.nn.functional
functionalFtorch.utils.mkldnnutilsmkldnnrv   torch.fx.noder   r	   torch.fx.passes.shape_propr
   torch.nn.utils.fusionr   r   __all__r/   r_   r#   r0   r-   rF   r   r|   r   r   r   r   r   r<   r@   r=   ReLU	MaxPool2d	AvgPool2dAdaptiveAvgPool2drelu	transposesigmoid
avg_pool2dadaptive_avg_pool2dr   addmulr   MkldnnConv2dMkldnnLinearrz   r   r   r   r   r   r   r   Tracerr   r!   r!   r!   r"   <module>   s   




	(

"

.	